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Abstract— System security is often analyzed and studied as-
suming error-free operation of the computer. Recently, due to
increasing transistor densities and processing speeds, there has
been renewed interest in the research of single-bit transient errors
and the effect they have on availability and performance. We
believe that it is also important to analyze security enforcement,
specifically kernel level enforcement, in the face of single-bit
transient errors.

Error-injection experiments are used to quantify the impact
that single-bit errors have on the Linux kernel with SELinux
enhancements. The SELinux enhancements provide Linux with
mandatory access controls, fine-grained access control lists, and
role-based-access controls. These controls are meant to isolate
processes and limit the power of users, including the root user.
Any failure to enforce the security policy could allow a major
security breach.

Error-injections are performed on the policy database as it
is being loaded into the kernel. Tests are then run against a
target file system to determine if the error created any security
vulnerabilities. The results show that approximately 33% of the
errors cause the policy to fail during loading. Of the remaining
errors we found 8 which allowed one of our prohibited tests to
succeed.

I. INTRODUCTION

Security research is largely focused on providing methods,
procedures, and best-practices that will make our computer
systems secure during error-free operation. There is no doubt
that this approach is valuable and will continue to be valuable
in the future. Still, we must not overlook the fact that errors
can and do occur in computers and these errors do have
impact this system. Recent work has indicated that transient
single bit errors can significantly affect system downtime.
Simultaneously, researchers in high-performance computing
have begun to take great interest in single-bit errors for they
are now a predominant factor affecting performance limits.
This study attempts to explore security in the face of single-
bit errors. Using the SELinux kernel as a target we have
gained an initial understanding of how single-bit data errors
can create vulnerabilities in the security mechanisms of an
operating system.

The Linux kernel with SELinux enhancements developed
by the National Security Agency was chosen to be the target

of our the error injection study. SELinux was selected for
many reasons: it has been widely adopted by most of the
mainstream Linux distributors, it is fairly flexible, it has
sufficient complexity to be interesting, it offers fine-grained
mandatory access controls (MAC), and the source code is
freely available. Other operating systems that offer some form
of MAC would also be interesting targets for error-injection.

Errors were injected using a modified kernel. The modifi-
cations were not intrusive and only affected kernel operation
when loading the policy at startup. Therefore, these modifica-
tions should have little effect on the outcome of the study. This
method was selected for convenience and could be replaced in
future studies by a non-intrusive error injector. As the policy is
loaded into the system a specific bit is flipped. The location of
this bit is a kernel parameter. This form of error most closely
resembles a fault that occurred on the disk image of the policy
database but may also represent a fault in the memory or
processor under certain conditions.

Section II reviews related work, section III presents
SELinux, section IV presents examples of vulnerable code,
section V provides a detailed description of our experimental
approach, section VI presents our results, and finally the
conclusion is presented in VII.

II. RELATED WORK

Single-bit faults have been shown to have a drastic effect
on system reliability, especially in high-altitude or extrater-
restrial environments where the error rates are the highest
due to cosmic rays. This is becoming more of a problem
in standard operating environments, as when semiconductor
densities increase and the supply voltages decrease the soft
error rates increase. Results from [1] indicate that one 4Mbit
DRAM will suffer from approximately 6000 Failures in Time
(FIT), or failures in a billion hours, if no error correction is
performed in the memory.

Using Error Correcting Codes (ECC) only serves to reduce
the problem. A portion of errors will still go undetected in the
presence of ECC. Faults in the processor or the communication
are not correctable by ECC in the memory. In [2] a system



with 1GB of memory composed of 64Mbit DRAM cells
had 3435 FIT when using standard ECC. As stated in [3]
this is equivalent to around 900 errors in 10000 machines
over 3 years. If only 1% of these errors created a security
vulnerability it would be an issue worth fixing. For example,
Google (TM) is known to use at least 15,000 commodity-
class PCs to provide their web search service [4]. Given a 1%
vulnerability rate there would be 13 vulnerabilities in a 3 year
period. More devastating attacks could occur if an attacker
were to successfully attack only one of these machines.

The Linux kernel is often used in reliability studies to char-
acterize the effect of errors on the system. Some have injected
errors using a customized user mode kernel [5] [6] while others
have injected errors directly into a running kernel [7]. In [7]
up to 47% of the injected errors did not manifest themselves
in a detectable fashion. It is conceivable that a portion of these
errors may have caused security vulnerabilities.

In [8] single-bit faults were injected to induce control flow
errors in sshd and ftpd, two commonly used Internet services.
This was the first paper to explicitly show the potential
for single-bit faults to cause a security vulnerability in real
networked applications. The authors chose to perform selective
exhaustive injection to reduce the number of injected errors ;
reducing the time and computational resource requirements.
Approximately 2-8% of the code was injected with errors.
The selections were made by identifying portions of the code
that related to user authentication. Errors were then injected
onto every branch instruction, creating control flow errors. A
majority of the errors caused crash failures (43-63%), but a
portion (1-2%) created permanent vulnerabilities.

Single-bit errors do not only represent a theoretical security
threat. Virtual machines like the Java Virtual Machine and the
.NET architecture are susceptible to real vulnerabilities caused
by single-bit errors. An attacker using a heat source, such as
a lamp, can increase the error rate enough in a smartcard [9]
to perform the attack in a reasonable amount of time. Earlier
research required sophisticated techniques, a high degree of
skill, sophisticated equipment and a decent amount of time
[10] [11].

Our study follows on the research performed by [8] and
extends it to kernel level security implementations. All pre-
vious studies have only performed security investigations in
user space programs, with virtual machines occupying the gray
area between kernel and user space. Fault-tolerant security
is an emerging concern as commodity PCs are replacing
their more reliable predecessors, mainframes. In these envi-
ronments, hardware fault tolerance is eschewed in favor of
simple redundancy, increasing the likelihood of soft errors.
Companies such as Google already employ thousands of
cheap, unreliable PCs in a massive redundant configuration
[4]. This method can provide traditional fault tolerance, but
may not provide adequate fault-tolerant security. To the best of
our knowledge this is the first study to perform a fault-tolerant
security study by using error injection on the SELinux kernel.

III. SELINUX

SELinux is a series of enhancements to the standard Linux
kernel developed by the National Security Agency. Originally
SELinux was distributed as a patch to a regular kernel. The
latest stable version of Linux (2.6) now contains SELinux as a
regular option. Many Linux distributors are currently shipping
or plan to ship products with SELinux enabled out of the box.

The SELinux enhancements provide Mandatory Access
Controls (MAC) to Linux through the Linux Security Module
(LSM) framework. The regular file permissions/user login in
Linux represent Discretionary Access Controls (DAC). In a
DAC model a compromised program running as the root
user would have complete access to the system. Under the
MAC model processes are granted/denied permissions using
more information than just the user identity. The SELinux
model defines permissions using subjects (users, programs,
processes) and objects (files, devices).

SELinux allows flexible and fine-grained control over any
object access at the cost of additional complexity. Under
SELinux a processes such as sendmail (which typically is run
as the root user) could be limited access to only the resources
necessary to perform it’s task. If it were compromised the
attacker would only gain access to these resources.

IV. EXAMPLES OF VULNERABLE CODE

Using the source code in Figure 1 we will illustrate the
effect a single-bit data error can have on SELinux policy
enforcement. There are four variables of interest in Fig. 1:
denied, requested, allowed, and SELinux_enforcing. All the
variables are unsigned 32-bit integers. The allowed variable
comes from the policy database through the access vector
cache (AVC). A single-bit error in either the policy database or
the AVC could hit the allowed variable. The enforcing variable
is modified via the SELinux virtual filesystem and allows the
system administrator to enable or disable SELinux permission
enforcement. Both of these variables are susceptible to single-
bit errors and will be described in greater detail in the
following two subsections.

The encoding used for requested makes it safe from single-
bit errors. In nearly all cases the requested variable contains
all zero bits except for a single one bit. A single-bit error will
either deny an authorized user (requested has to be non-zero
and match allowed) or have no effect at all. If a single bit
error were to corrupt the denied field it could create a security
vulnerability. However this would be a rare occurrence because
the denied value is updated and used within a few instructions.
Any transient errors latent in the memory location would be
removed when the data was written to memory.

A. Single Bit Faults Affecting the Enforcing Variable

A single-bit error in the first bit of the SELinux_enforcing
variable will allow all SELinux permission checks to pass, in
essence falling back to the regular DAC of the Linux. If this
occurs, it will remove all SELinux security checks, creating a
massive vulnerability if the system was dependent of SELinux
security. Furthermore, the system administrator will be given



denied = requested & ~ (ae->avd.allowed);
if ('requested || denied) {
if (selinux_enforcing) {
rc = —-EACCES; goto out;
} else {
ae—->avd.allowed

goto out;

|= requested;

Fig. 1. Source Code

avc: denied { append } for pid=850
exe=/bin/bash name=passwd

dev=ubda ino=28951
scontext=root:staff_r:staff_ t
tcontext=system_u:object_r:etc_t

tclass=file

0x00000200
0x00022053

requested =
ae->avd.allowed =

Fig. 2. Append to /etc/passwd by staff_r

a false sense of security because the AVC denial messages
will still be generated. Luckily, only one bit is vulnerable and
so it is very unlikely that an error will affect this bit before
the system crashes, even when the bit-error-rate is abnormally
high.

B. Single Bit Faults Affecting the Allowed Variable

A single-bit error in the allowed variable will have the great-
est impact on the security of the system. If the error causes
a 0 to 1 transition then additional permissions are granted, if
the error causes a 1 to O transition then a given permission
will be denied, the later being merely an inconvenience. The
allowed variable may be corrupted while it is in the policy
database or the AVC. It represents the bitwise OR of all
the allowed permission for a particular security domain. For
example, the append permission is 0x00000200. This encoding
scheme ensures that a single-bit error can cause a security
vulnerability under the right conditions. We can see a typical
permission denial in Fig. 2. In this case the root user under
the role staff_r attempts to append data to the protected file,
letc/passwd. If an error affected the 9th bit in the allowed field
then permission will be granted to the user. It is difficult to
determine the window of vulnerability because it is dependent
on the location of the error. If the error were in the policy
database it would persist until a policy reload. If the error
were in the AVC it would persist until the cache element was
refreshed or overwritten.

V. EXPERIMENTAL APPROACH

Given the complexity of the SELinux code it would have
been difficult to determine all locations where a single-bit error

could cause a vulnerability by inspection of the source. We
used an experimental approach to exhaustively inject errors
into the policy database as it was being loaded.

A. User-Mode Linux

The centerpiece of our experimental approach is User-Mode
Linux. User-Mode Linux is a set of enhancements that can be
compiled into a standard Linux kernel. These enhancements
allow the Linux kernel to run as a user-mode program. Nearly
all of the original kernel code is used, with only a small portion
being modified to support userspace operation. Therefore a
user-mode kernel should have nearly identical behavior to that
of a regular kernel. In many ways usermode Linux is similar
to an x86 emulator, such as VMware. However, usermode
Linux does not emulate an individual processor, but simply
utilizes the host kernel to act on the hardware. This allows
usermode Linux execute with considerably less overhead. It
also would have been possible to perform our experiments
directly on the host kernel, but User-Mode Linux provides
many benefits over this traditional method. If the kernel hangs
it can be detected without requiring a hardware watchdog
timer, file system corruptions can easily be recovered, tests
can be parallelized across many computers, and the kernel
itself can be debugged using standard debugging tools such as
gdb.

B. Client and Server Operation

We created a simple infrastructure to boot the user-mode
kernel with a different error each time. A server keeps a list
of every error to try and it collects the results of the boot
with each error. The client, which may run on many hosts
in parallel, requests a job from the server, sets up the file
systems for the user-mode kernel, and boots the kernel. Once
the kernel has started, the SELinux policy is loaded with
the requested error. A script running inside the kernel then
attempts to violate the policy by making several prohibited
requests. The client gives the script 30 seconds to finish and
shutdown the user-mode kernel, after which time the system
is considered hung and killed. The client then checks the file
system to see if SELinux enforced its policy in spite of the
error. Finally the client gathers all the results, returns them to
the server, and requests a new job.

C. Error Model

Error injections are performed on the policy database as
it is being loaded into the kernel. These errors most closely
represent an error on the policy image that is stored on disk.
An error on the disk is a permanent error that will exist until
the policy image is recreated by the administrator. If the policy
successfully loads than the error can represent a wider range
of faults including: faults in the disk image, faults in the main
memory, faults in the cache, and faults in the processor.

D. Error Injection

Choosing the method used for error injection required cer-
tain trade-offs. The most recent policy distributed for SELinux
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Fig. 3. Fault Injection Framework

creates a 500kB policy image. Performing exhaustive testing
on a policy this large would require significant computing
resources. Given that it would be difficult to determine a priori
the sections of the policy database that were most relevant to
security, we could not resort to selective exhaustive injection.
If, instead, we chose random injection we would risk the
chance that the injected errors would create vulnerabilities in
the policy that did were not explicitly tested or have no effect
at all while skipping over potentially interesting bits. Our
experimental method is a trade-off between the two extremes.
To make exhaustive injection feasible the policy was simplified
by removing all unnecessary rules. This reduced the policy to
approximately 18kB.

The error injector was implemented in the kernel code by
modifying the selinuxfs.c file. Figure 5 shows an abbreviated
listing of the fault injector code. The variables fault_bit and
fault_byte are passed on the command line as kernel parame-
ters. The location of the error can then be changed by running
the kernel with different parameters. After the policy has been
read from the file system it is copied to kernel memory space
and then the error is injected into the desired byte. After the
error is injected the policy is passed to the normal SELinux
routines.

The policy is loaded into kernel space via the SELinux
virtual file system. This virtual file system is typically mounted
at /selinux and provides a device node to load the policy
from user space. Under normal conditions the init process is
responsible for loading the policy into the kernel. To speed
execution of the experiments we have removed the normal init
process and replaced it with a special init program that loads
the policy, perform a set of security tests, and then attempts
to shutdown the kernel. Replacing the standard init reduced
execution time on a Pentium II 400MHz computer to under
10 seconds compared to over a minute for a regular boot.
Furthermore, the only process running in our test environment

/selinux/load

policy.15 \b

copy_from_user()

)

inject_fault()

v

security_load_policy()

Fig. 4. Fault Injection Location

static inline void inject_fault(
char* data, int count)

unsigned char fault_mask =
0x01 << fault_bit;

*(data + fault_byte) =

*(data + fault_byte) fault_mask;

Fig. 5. Fault injector routine

is the init program allowing us to conduct controlled security
tests with faults on each bit in the policy in turn.

E. Test Policy

As mentioned above, our error injections were performed on
a simplified policy. The base SELinux policy contains 3 users,
5 roles, 313 types, 30 classes and 19741 rules. The simplified
policy used for our experiment has only 1 user, 2 roles, 162
types, 30 classes, and 301 rules. Reducing the rule set did
more than just reduce the file size. It also provided a simpler
environment to test, hopefully increasing the chance that our
error injections would create vulnerabilities in the areas we
were checking.

Our simplified policy follows a basic deny all strategy to
the kernel t domain, in which our test init runs. The only
permissions explicitly granted are those required to start the
test. All other permissions are denied. This is clearly very
simplified and many vulnerabilities will be prevented because
most operations will perform multiple unique security checks.
Our policy is not representative of one that could be found in
a real system which would be larger and more complex and
thus more susceptible to errors in design.

VI. RESULTS AND DISCUSSION

A total of 144818 errors were injected and tested. This
resulted in approximately 32.5 million lines of output. We



TABLE I
RESULTS OF INJECTIONS

Errors That Caused Vulnerabilities 8
Errors That Had No Measured Security Impact 96770
Errors That Failed Policy Load 48040
Total Errors Injected 144818

Errors causing valunerbility

Fig. 6. Vulnerability Location

parsed the output to look for runs with abnormal behavior.

A significant portion of the errors (33%) caused the policy
to fail during the loading. This may or may not represent
a security vulnerability, depending on the behavior of the
init program. For our experiments, the kernel was allowed
to continue with no policy loaded, allowing full permissions.
The regular init distributed with SELinux will halt the kernel
with an error message preventing these errors from causing a
vulnerability.

Our test script checked the enforcement of restrictions on
11 different types of actions, each of which should have
been blocked by the SELinux policy. The 11 actions focused
on file and directory restrictions: file read, file create, file
append, file move, soft link creation, file unlink, file chmod,
file execute, directory list, directory create, and directory
remove. Unlike previous studies, which tested authentication
or privilege escalation, there is not a single operation that can
be performed to evaluate SELinux security.

The results are presented in Table I and Figure 6. The
relatively small number of vulnerabilities which produce errors
seems to indicate that the problem in not very serious. Perhaps
this is true, but given the simplifications we required and a few
experimental flaws there may be a more significant number of
interesting errors.

A. Difficulties and Problems

One of the flaws which considerably affected our study is we
started with a policy that allowed file read and execute opera-
tions during an error-free run. We did not realize this mistake
until it was too late to correct. An interesting result from those
portions of the test is that 1.3% of errors successfully injected
into the policy prevented the file read access, which should
have been granted according to the policy. Clearly this is not
a vulnerability, but it could create a denial of service problem.

We believe that the results we have presented are biased
against allowing a vulnerability because many of the op-
erations that perform modifications to the target filesystem
require multiple permissions to be granted to be successful.
In the cases where only one of the permissions was allowed
we would see no end effect, and thus would not notice any
weakness. This is good for system security in general, but
makes objective measurement difficult.

Part of the SELinux policy specifies what actions it should
output for auditing. When conducting this experiment we only
enabled auditing of permission checks when access is denied.
In future studies we shall also enable auditing of checks where
access is allowed, giving us a more complete picture of why
a specific error denies or allows some action.

While we shrank the policy in an attempt to simulate a
fault into every possible bit we ran out of time before we
could complete every run. We ran with each error once but
approximately 3.8% of the runs were lost due to possible
User-Mode Linux crashes. We knew our version of User-Mode
Linux would occasionally crash independently of the presence
of an error, destroying the output of a run, but did not have
time to try every error that experienced a crash. We also did not
expect a bug in the kernel of our host machine which required
a reboot every three hours. We hoped to have access to more
than two machines and future experiments should complete
more quickly once we get access to them. Complete results
from all runs will be available within a few days.

VII. CONCLUSIONS AND FUTURE DIRECTION

Not surprisingly, we have shown that a single bit flip can
create a serious vulnerability in a computer system. A single
bit flip in the SELinux policy can cause more than one action
to be allowed which an error free policy would deny. Of the
144818 faults we simulated we found 8 that corrupted the
policy enough to allow at least one of our prohibited accesses
to succeed.

A complete policy which allows all the access needed for a
system to operate correctly while denying most other access
will be complex. There are a very large number of ways
one could attempt to violate such a policy, making complete
testing very difficult. Building a policy that assures some
reliability when faced with single bit errors is even more
difficult. We have shown that a single bit error in SELinux
does not necessarily change a single subject’s access to a
single object. The rate at which these errors do have any effect
on the system security enforcement is very low. A bit flip in
memory is much more likely to prevent access, rather than
deny it. This was observed because many of our tests needed
multiple access (getattrib for directory and file in addition to
actual test). Extremely security-sensitive administrators, such
as those who use SELinux, should understand the risk.

Continuing this work we will restart injecting errors into
our shorter policy file, correcting the mistakes described in
Difficulties and Problems. Because the number of errors which
cause a measurable vulnerability is small we will trace back
to the cause of each of them in the source code. We would



like to compare these results to those generated by a con-
ventional policy injected with random errors. We also intend
to inject errors directly into the text and data sections of a
totally unmodified user-mode kernel using the ptrace interface.
We are also interested in having someone familiar with the
implementation of SELinux attempt to analyze it for single
bit error weaknesses based on their evaluation of the source
code, providing a comparison to our experimental method.
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