

An Experimental Study of File
Permission Vulnerabilities

Caused by Single-Bit Errors in
the SELinux Kernel Policy File

Tom Brown and Michael Ihde

Final Presentation

ECE442 Spring ‘04

Quick Review of Project Goal

• Determine if SELinux is vulnerable to single-bit
errors
– First study focuses on errors in policy file

• 4Mbit DRAM suffers approx. 6000 FIT [1]
• A system with 1GB of standard ECC will still

experience 3435 FIT [2]
– Equivalent to 900 errors in 10000 machines over 3

years
– Google uses at least 15,000 commodity machines

• 1% fault vulnerability rate would create 13 vulnerabilites in 3
years

Quick Review of SELinux

• Provides Mandatory Access Controls to
Linux through the Linux Security Module
framework
– Regular user/file permission is Discretionary

Access Control
• Owner of file/process can grant permissions to

others
• Root user is all powerful with Discretionary Access

Control

The New Fault Injector Framework

• Allows for distributed
processing

• Simplified Injection
Method

• Robust recovery from
faults and restarts

Error Injector Location

• Implemented by added
code to selinuxfs.c

• Injects error as the policy
is being loaded

• Errors occur before
SELinux processing
– Most directly represents

disk faults
– If the policy loads in can

represent many other faults

The Test Policy

• Designed to reduce policy size and facilitate
easier testing
– 1 domain (kernel_t)
– 1 user (system) / compared to 3 (system, sysadm, user)
– 301 rules / compared to 19741
– Specifically allow permissions needed to run, deny everything

else
– File contexts not modified

• The million dollar question…does this represent
a real policy?

The Short Answer

• Yes
– Our security tests only concern the target file

system, and thus a simple policy is
representative of a portion of a complex policy

• and No…
– A real policy would have far more rules with

possible interactions
• Errors may have a greater effect.

Results

• A majority of the
errors had no
measured security
impact

• Errors that failed
policy load may
create vulnerabilities if
injected after load
– This is an artifact of our

injection method

144818Total Errors
Injected

48040Errors That Failed
Policy Load

96770Errors That Had No
Measured Security
Impact

8Errors That Cause
Vulnerabilities

Results (cont.)

• In most cases each
vulnerability occurred only
once

• Some of the operations
actually require multiple
permission
– Our method masked these

vulnerabilities
• Read and Execute were

accidentally allowed in the
fault free policy
– Injections actually denied

read in over 1.3% of the
errors

0

1

2

3

4

re
ad

cr
ea
te
fil
e

ap
pe
nd
m
ov
e

sy
m
lin
k

un
lin
k

ch
m
od ls

ex
ec
ut
e

m
kd
ir

rm
di
r

Vulnerabilities

Other Difficulties and Problems

• Every bit was injected with an error, but
approx. 3.8% of the runs were lost due to
possible UML crashes.

• Memory Leak in UML forced reboot of
machine every three hours

• Enabling SELinux auditing would have
allowed easier parsing, allowing for a
more complete picture.

Future Work

• Correct errors in test policy and re-run
experiments

• Trace back vulnerabilities to their cause in
source code.

• Perform random error injection in a full policy

• Perform error injection into the Text or Data
segments using the ptrace interface

• Independent inspection of source code to
compare to our experimental study

References and Questions

• [1] J. Ziegler et al. (2003, May) IBM
experiments in soft fails in computer
electronics

• [2] T.J. Dell (1997, Nov) A white paper on
the benefits of chipkill-correct ECC for pc
server main memory

