An Experimental Study of File
Permission Vulnerabilities
Caused by Single-Bit Errors in
the SELinux Kernel Policy File

Tom Brown and Michael Ihde
Final Presentation
ECE442 Spring ‘04

Quick Review of Project Goal

* Determine if SELinux is vulnerable to single-bit

errors
— First study focuses on errors in policy file

* 4Mbit DRAM suffers approx. 6000 FIT [1]

* A system with 1GB of standard ECC will still
experience 3435 FIT [2]

— Equivalent to 900 errors in 10000 machines over 3
years

— Google uses at least 15,000 commodity machines
* 1% fault vulnerability rate would create 13 vulnerabilites in 3
years

Quick Review of SELinux

* Provides Mandatory Access Controls to
Linux through the Linux Security Module
framework

— Regular user/file permission is Discretionary
Access Control

* Owner of file/process can grant permissions to
others

* Root user is all powerful with Discretionary Access
Control

The New Fault Injector Framework

* Allows for distributed
processing

* Simplified Injection
Method

* Robust recovery from
faults and restarts

SELinux Fault Injection

Server Client Run Command UM-SELinux

Eagin Exparimant Bagin Exparimsa

Wailfor Reque: Request Jab
=
8 '
™ rovida Job xaou
N
8
=
£
v
=
i
=
[}
@©
g
=
=
o]
w

It Calla
Sand Rasult
‘_J
| Loap |I

Error Injector Location

* Implemented by added
code to selinuxfs.c

* Injects error as the policy
Is being loaded

[selinux/load

* Errors occur before policy.15
SELinux processing copy_from_user()
— Most directly represents v
disk faults
— If the policy loads in can inject_fault(
represent many other faults v
security _load policy()

The Test Policy

* Designed to reduce policy size and facilitate

easier testing

— 1 domain (kernel_t)

— 1 user (system) / compared to 3 (system, sysadm, user)
— 301 rules / compared to 19741

— Specifically allow permissions needed to run, deny everything
else

— File contexts not modified

* The million dollar question...does this represent
a real policy?

The Short Answer

* Yes

— Our security tests only concern the target file
system, and thus a simple policy is
representative of a portion of a complex policy

* and No...

— A real policy would have far more rules with
possible interactions

* Errors may have a greater effect.

Results

* A majority of the
errors had no
measured security
Impact

* Errors that failed
policy load may
create vulnerabilities if
injected after load

— This is an artifact of our
Injection method

Errors That Cause 8
Vulnerabilities

Errors That Had No 96770
Measured Security

Impact

Errors That Failed 48040
Policy Load

Total Errors 144818

Injected

Results (cont.)

In most cases each
vulnerability occurred only
once

Some of the operations

actually require multiple

permission

— Our method masked these
vulnerabilities

Read and Execute were

accidentally allowed in the

fault free policy

— Injections actually denied
read in over 1.3% of the
errors

O Vulnerabilities

Other Difficulties and Problems

* Every bit was injected with an error, but
approx. 3.8% of the runs were lost due to
possible UML crashes.

* Memory Leak in UML forced reboot of
machine every three hours

* Enabling SELinux auditing would have
allowed easier parsing, allowing for a
more complete picture.

Future Work

Correct errors in test policy and re-run
experiments

Trace back vulnerabilities to their cause in
source code.

Perform random error injection in a full policy

Perform error injection into the Text or Data
segments using the ptrace interface

Independent inspection of source code to
compare to our experimental study

References and Questions

* [1] J. Ziegler et al. (2003, May) IBM
experiments in soft fails in computer
electronics

* [2] T.J. Dell (1997, Nov) A white paper on
the benefits of chipkill-correct ECC for pc
server main memory

