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Quick Review of Project Goal

• Determine if SELinux is vulnerable to single-bit 
errors
– First study focuses on errors in policy file

• 4Mbit DRAM suffers approx. 6000 FIT [1]
• A system with 1GB of standard ECC will still 

experience 3435 FIT [2]
– Equivalent to 900 errors in 10000 machines over 3 

years
– Google uses at least 15,000 commodity machines

• 1% fault vulnerability rate would create 13 vulnerabilites in 3 
years



  

Quick Review of SELinux

• Provides Mandatory Access Controls to 
Linux through the Linux Security Module 
framework
– Regular user/file permission is Discretionary 

Access Control
• Owner of file/process can grant permissions to 

others
• Root user is all powerful with Discretionary Access 

Control



  

The New Fault Injector Framework

• Allows for distributed 
processing

• Simplified Injection 
Method

• Robust recovery from 
faults and restarts



  

Error Injector Location

• Implemented by added 
code to selinuxfs.c

• Injects error as the policy 
is being loaded

• Errors occur before 
SELinux processing
– Most directly represents 

disk faults
– If the policy loads in can 

represent many other faults



  

The Test Policy

• Designed to reduce policy size and facilitate 
easier testing
– 1 domain (kernel_t)
– 1 user (system) / compared to 3 (system, sysadm, user)
– 301 rules / compared to 19741
– Specifically allow permissions needed to run, deny everything 

else
– File contexts not modified

• The million dollar question…does this represent 
a real policy?



  

The Short Answer

• Yes
– Our security tests only concern the target file 

system, and thus a simple policy is 
representative of a portion of a complex policy

• and No…
– A real policy would have far more rules with 

possible interactions
• Errors may have a greater effect.



  

Results

• A majority of the 
errors had no 
measured security 
impact

• Errors that failed 
policy load may 
create vulnerabilities if 
injected after load
– This is an artifact of our 

injection method

144818Total Errors 
Injected

48040Errors That Failed 
Policy Load

96770Errors That Had No 
Measured Security 
Impact

8Errors That Cause 
Vulnerabilities



  

Results (cont.)

• In most cases each 
vulnerability occurred only 
once

• Some of the operations 
actually require multiple 
permission
– Our method masked these 

vulnerabilities
• Read and Execute were 

accidentally allowed in the 
fault free policy
– Injections actually denied 

read in over 1.3% of the 
errors
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Other Difficulties and Problems

• Every bit was injected with an error, but 
approx. 3.8% of the runs were lost due to 
possible UML crashes.

• Memory Leak in UML forced reboot of 
machine every three hours

• Enabling SELinux auditing would have 
allowed easier parsing, allowing for a 
more complete picture.



  

Future Work

• Correct errors in test policy and re-run 
experiments

• Trace back vulnerabilities to their cause in 
source code.

• Perform random error injection in a full policy

• Perform error injection into the Text or Data 
segments using the ptrace interface

• Independent inspection of source code to 
compare to our experimental study
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